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Abstract— In robotics, vertical lines have been always very
useful for autonomous robot localization and navigation in
structured environments. This paper presents a robust method
for matching vertical lines in omnidirectional images. Matching
robustness is achieved by creating a descriptor which is very
distinctive and is invariant to rotation and slight changes of illu-
mination. We characterize the performance of the descriptor on
a large image dataset by taking into account the sensitiveness to
the different parameters of the descriptor. The robustness of the
approach is also validated through a real navigation experiment
with a mobile robot equipped with an omnidirectional camera.

I. INTRODUCTION

A. Previous work

Omnidirectional cameras are cameras that provide a 360◦

field of view of the scene. Such cameras are often built by

combining a perspective camera with a shaped mirror. Fixing

the camera with the mirror axis perpendicular to the floor

has the effect that all world vertical lines are mapped to

radial lines on the camera image plane. In this paper, we deal

with vertical lines because they are predominant in structured

environments.

The use of vertical line tracking is not new in the

robotics community. Since the beginning of machine vision,

roboticists have been using vertical lines or other sorts of

image measure for autonomous robot localization or place

recognition.

Several works dealing with automatic line matching have

been proposed for standard perspective cameras and can be

divided into two categories: those that match individual line

segments; and those that match groups of line segments.

Individual line segments are generally matched on their ge-

ometric attributes (e.g. orientation, length, extent of overlap)

[8]–[10]. Some such as [11]–[13] use a nearest line strategy

which is better suited to image tracking where the images

and extracted segments are similar. Matching groups of line

segments has the advantage that more geometric information

is available for disambiguation. A number of methods have

been developed around the idea of graph-matching [14]–

[17]. The graph captures relationships such as “left of”,

“right of”, cycles, “collinear with” etc, as well as topological

connectedness. Although such methods can cope with more

significant camera motion, they often have a high complexity
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and again they are sensitive to error in the segmentation

process.

Besides these methods, other approaches to individual

line matching exist, which use some similarity measure

commonly used in template matching and image registration

(e.g. Sum of Squared Differences (SSD), simple or Normal-

ized Cross-Correlation (NCC), image histograms [4]). An

interesting approach was proposed in [5]. Besides using the

topological information of the line, the authors also used

the photometric neighborhood of the line for disambiguation.

Epipolar geometry was then used to provide a point to point

correspondence on putatively matched line segments over

two images and the similarity of the lines neighborhoods

was then assessed by cross-correlation at the corresponding

points.

A novel approach, using the intensity profile along the

line segment, was proposed in [6]. Although the application

of the method was to wide baseline point matching, the

authors used the intensity profile between two distinct points

(i.e. a line segment) to build a distinctive descriptor. The

descriptor is based on affine invariant Fourier coefficients that

are directly computed from the intensity profile. In the work

described in [7], the authors define also a descriptor for ver-

tical lines which incorporates geometric, color, and intensity

invariants. This method and the one above however require

that the line’s ends are accurately detected. Conversely, our

method does not need this requirement.

All the methods cited above were defined for perspective

images. To match vertical lines in omnidirectional images,

however, only mutual and topological relations have been

used (e.g. neighborhood or ordering constraints) sometimes

along with some of the similarity measures cited above (e.g.

SSD, NCC) (see [1]–[3]).

B. Contributions and Outline

This paper extends our previous work [21], summarized

in Sections II and III. In these sections, we describe how we

built our robust descriptor for vertical lines, which is very

distinctive and is invariant to rotation and slight changes of

illumination. The main contribution of this paper consists in

characterizing the performance of the descriptor introduced

in our previous work. The performance evaluation is done on

a large image dataset and takes into account the sensitiveness

to image noise, to image saturation, and to all the parameters

used to define the descriptor. Furthermore, we also evaluate
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Fig. 2. Extraction of the circular
areas.

the robustness of the approach by tracking vertical lines in

a real navigation experiment using a mobile robot equipped

with an omnidirectional camera.

The present document is organized as follows. First, we

describe our procedure to extract vertical lines (Section

II) and build the descriptor (Section III). In Section IV,

we provide our matching rules, while the analysis of the

performance and the results of tracking are respectively

presented in Sections V and VI.

II. VERTICAL LINE EXTRACTION

Our platform consists of a wheeled robot equipped with

an omnidirectional camera looking upwards. In our arrange-

ment, we set the camera-mirror system perpendicular to the

floor where the robot moves. This setting guarantees that all

vertical lines are approximately mapped to radial lines on the

camera image plane (Fig. 1) In this section, we detail our

procedure to extract prominent vertical lines. Our procedure

consists of the following steps.

First, we apply a Sobel edge detector and compute the

binary edge image. Then, we use a circle detector to compute

the position of the image center (i.e. the point where all

radial lines intersect in). This can be easily done because

the external border of the mirror is visible in the image.

To detect the vertical lines, we use a Hough transform.

Observe that in our case the Hough space has only one

dimension (θ). Every cell in the Hough space contains the

number of pixels that vote for the same orientation. We

set the dimension of the Hough space equal to 720 cells,

which give an angular resolution of 0.5◦. Then, we apply

non-maxima suppression to identify all local peaks.

III. BUILDING THE DESCRIPTOR

In Section IV, we will describe our method for matching

vertical lines between consecutive frames while the robot is

moving. To make the feature correspondence robust to false

positives, each vertical line is given a descriptor which is

very distinctive and is invariant to rotation and slight changes

of illumination. In this way, finding the correspondent of a

vertical line can be done by looking for the line with the

closest descriptor. In the next subsections, we describe how

we built our descriptor.

A. Rotation Invariance

Given a radial line, we divide the space around it into three

equal non-overlapping circular areas such that the radius ra

of each area is equal to (Rmax−Rmin)/6 (see Fig. 2). Then,

we compute the image gradients (magnitude M and phase

Φ) within each of these areas and we smooth its magniture

with a Gaussian window with σG = ra/3.

Concerning rotation invariance, this is achieved by

redefining the gradient phase Φ of all points relatively to

the radial line’s angle θ (see Fig. 2).

B. Orientation Histograms

To make the descriptor robust to false matches, we split

each circular area into two parts (the left and right across

the line) and consider each one individually. For each side

of each circular area, we compute the gradient orientation

histogram. Namely, the whole orientation space (from -π to

π) is divided into Nb equally spaced bins and each bin is

assigned the sum of the gradient magnitudes which belong

to the correspondent orientation interval. In the end we have

three pairs of orientation histograms:

H1 = [H1L,H1R] ,H2 = [H2L,H2R] ,H3 = [H3L,H3R]

(1)

where subscripts L, R identify respectively the left and right

section of each circular area.

C. Building the Feature Descriptor

From the computed orientation histograms, we build the

final feature descriptor by stacking all three histogram pairs

as follows:

H = [H1,H2,H3] (2)

To have slight illumination invariance, we pre-normalize each

histogram vector Hi to have unit length. This choice relies on

the hypothesis that the image intensity changes linearly with

illumination. However, non-linear illumination changes can

also occur due to camera saturation or due to illumination

changes that affect 3D surfaces with different orientations

by different amounts (see Fig. 10). These effects can cause

a large change in relative magnitude for some gradients, but

are less likely to affect the gradient orientations. Therefore,

we reduce the influence of large gradient magnitudes by

thresholding the values in each unit histogram vector so that

each bin is no larger than 0.1, and then renormalizing to unit

length. This means that matching the magnitudes for large

gradients is no longer as important, and that the distribution

of orientations has greater emphasis. The value 0.1 was

determined experimentally and will be justified in Section

V. Although this is not true in nature, this approximation

proved to work properly and will be shown in Sections V

and VI.

To resume, our descriptor is an N -element vector contain-

ing the gradient orientation histograms of the circular areas.

In our setup, we extract 3 circular areas from each vertical

feature and use 32 bins for each histogram; thus the length

of the descriptor is

N = 3areas · 2parts · 32bins = 192 (3)

Observe that all the feature descriptors have the same length.
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IV. FEATURE MATCHING

As every vertical feature has its own descriptor, its corre-

spondent in consecutive images can be searched among the

features with the closest descriptor. To this end, we need

to define a dissimilarity measure (i.e. distance) between two

descriptors.

In the literature, several measures have been proposed

for the dissimilarity between two histograms H = {hi}
and K = {ki}. These measures can be divided into two

categories. The bin-by-bin dissimilarity measures only com-

pare contents of corresponding histogram bins, that is, they

compare hi and ki for all i, but not hi and kj for i 6= j.

The cross-bin measures also contain terms that compare

non-corresponding bins. Among the bin-by-bin dissimilar-

ity measures, fall the Minkoski-form distance, the Jeffrey

divergence, the χ2 statistics, and the Bhattacharya distance.

Among the cross-bin measures, one of the most used is the

Quadratic-form distance. An exhaustive review of all these

methods can be found in [18]–[20].

In our work, we tried the dissimilarity measures mentioned

above but the best results were obtained using the L2 distance

(i.e. Euclidean distance) that is a particular case of the

Minkoski-form distance. Therefore, in our experiments we

used the Euclidean distance as a measure of the dissimilarity

between descriptors, which is defined as:

d(H,K) =

√

√

√

√

N
∑

i=1

|hi − ki|2 (4)

By definition of distance, the correspondent of a feature,

in the observed image, is expected to be the one, in the

consecutive image, with the minimum distance. However,

if a feature is no longer present in the next image, there

will be a closest feature anyway. For this reason, we defined

three tests to decide whether a feature correspondent exists

and which one the correspondent is. Before describing these

tests, let us introduce some definitions.

Let {A1,A2, . . . ,ANA
} and {B1,B2, . . . ,BNB

} be two

sets of feature descriptors extracted at time tA and tB
respectively, where NA, NB are the number of features in

the first and second image. Then, let

Di = {d(Ai,Bj), j = 1, 2, . . . , NB)} (5)

be the set of all distances between a given Ai and all Bj

(j = 1, 2, · · · , NB).
Finally, let minDi = mini (Di) be the minimum of the

distances between given Ai and all Bj.

A. First test

The first test checks that the distance from the closest

descriptor is smaller than a given threshold, that is:

minDi = F1. (6)

By this criterion, we actually set a bound on the maximum

acceptable distance to the closest descriptor.

TABLE I

THE PARAMETERS USED BY OUR ALGORITHM WITH THEIR EMPIRICAL

VALUES

F1 = 1.05 F2 = 0.75 F3 = 0.8

B. Second test

The second test checks that the distance from the closest

descriptor is smaller enough than the mean of the distances

from all other descriptors, that is:

minDi = F2· < Di > (7)

where < Di > is the mean value of Di and F2 clearly ranges

from 0 to 1. This criterion comes out of experimental results.

C. Third test

Finally, the third test checks that the distance from the

closest descriptor is smaller than the distance from the second

closest descriptor:

minDi = F3 · SecondSmallestDistance, (8)

where F3 clearly ranges from 0 to 1. As in the previous test,

the third test raises from the observation that, if the correct

correspondence exists, then there must be a big gap between

the closest and the second closest descriptor.

Factors F1, F2, F3 were determined experimentally. The

values used in our experiments are shown in Table I. The

choice of these values will be motivated in Section V.

V. PERFORMANCE EVALUATION

In this section, we characterize the performance of our

descriptor on a large image dataset by taking into account

the sensitiveness to different parameters, which are image

saturation, image noise, number of histogram bins, and

number of circular areas. Furthermore, we also motivate the

choice of the values of F1, F2, and F3 shown in Table I.

1) Ground truth: To generate the ground truth for testing

our descriptor, we used a database of 850 omnidirectional

pictures that is a subset of the whole video sequence used

in Section VI. First, we extracted verticals lines from each

image. Then we manually labeled all the corresponding

features with the same ID. The images were taken from

the hallway of our department. Figure 10 shows four

sample images from our dataset. The images show that the

illumination conditions vary strongly. Due to big windows,

a mixture of natural and artificial lighting produces difficult

lighting conditions like highlights and specularities. With

regard to the viewpoint change, the maximum camera

displacement between two views of the same vertical line

was about 5 meters, while the average displacement was

around 2 meters.
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Fig. 3. Influence of saturation on correct matches.
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Fig. 4. Influence of noise level (%) on correct matches. The correct matches
are found using only the nearest descriptor in the database.

2) Image saturation: As we mentioned in Section III-C,

we threshold the values of the histogram vectors to reduce

the influence of image saturation. The percentage of correct

matches for different threshold values is shown in Fig.

3. The results show the percentage of verticals that find

a correct match to the single closest neighbor among

the whole database. As the graph shows, the maximum

percentage of correct matches is reached when using a

threshold value equal to 0.1. In the remainder of this paper,

we will always use this value.

3) Image noise: The percentage of correct matches

for different amounts of gaussian image noise (from 0%
to 10%) is shown in Fig. 4. Again, the results show the

percentage of correct matches found using the single

nearest neighbor in the all database. As this graph shows,

the descriptor is resistant even to large amount of pixel noise.

4) Histogram bins and circular areas: There are two

parameters that can be used to vary the complexity of

our descriptor: the number of orientation bins (Nb) in the

histograms and the number of circular areas. Although in

the explanation of the descriptor we used 3 non overlapping

circular areas, we evaluated the effect of using 5 overlapping

areas with 50% overlap between two circles. The results

are shown in Fig. 5. As the graph shows, there is a slight

improvement in using 5 overlapping areas (the amelioration

is only 1%). Also, the performance is quite similar using

8, 16, or 32 orientation bins. Following this considerations,

the best choice would seem to use 3 areas and 8 histogram
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Fig. 6. The probability density function that a match is correct according
to the first rule.

bins in order to reduce the dimension of the descriptor.

Conversely, since in this graph the percentage of correct

matches is found by using only the nearest closest descriptor,

we observed that the best matching results, when using the

three rules of Section IV, are obtained with 32 orientations.

Thus, in our implementation we used 3 areas and 32

histogram bins. Finally observe that we considered powers

of 2 due to computational efficiency.

5) Matching rules: Figure 6 shows the Probability Den-

sity Function (PDF) for correct and incorrect matches in

terms of the distance to the closest neighbor of each keypoint.

In our implementation of the first rule, we chose F1 = 1.05.

As observed in the graph, by this choice we reject all matches

in which the distance to the closest neighbor is greater

than 1.05, which eliminates 50% of the false matches while

discarding less than 5% of correct matches.

Similarly, Fig. 7 shows the PDFs in the terms of the ratio

of closest to average-closest neighbor of each keypoint. In

our implementation of the second rule, we chose F2 = 0.75.

As observed in the graph, by this choice we reject all matches

where the ratio between the closest neighbor distance and

the mean of all other distances is greater than 0.75, which

eliminates 45% of the false matches while discarding less

than 8% of correct matches.

Finally, Fig. 8 shows the PDFs in terms of the ratio of

closest to second-closest neighbor of each keypoint. In our

implementation of the third rule, we chose F3 = 0.8; in

this way we reject all matches in which the distance ratio is
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to the third rule.

greater than 0.8, which eliminates 92% of the false matches

while discarding less than 10% of correct matches.

VI. EXPERIMENTAL RESULTS

In our experiments, we adopted a mobile robot with a

differential drive system endowed of encoder sensors on the

wheels. Furthermore, we equipped the robot with an omni-

directional camera consisting of a KAIDAN 360 One VR

hyperbolic mirror and a SONY CCD camera the resolution

of 640×480 pixels. In this section, we show the performance

of our feature extraction and matching method by capturing

pictures from our robot in a real indoor environment.

The robot was moving at about 0.15 m/s and was acquir-

ing frames at 3 Hz, meaning that during straight paths the

traveled distance between two consecutive frames was 5 cm.

The robot was moved in the hallway of our institute and

1852 frames were extracted during the whole path. Figure

10 shows four sample images from the dataset.

The result of feature tracking is shown only for the first

150 frames in Fig. 9. The graph shown in Fig. 9 was

obtained using only the three matching rules described in

Sections IV-A, IV-B, IV-C. No other constraint, like mutual

relations, has been used. This plot refers to a short path of

the whole trajectory while the robot was moving straight

(between frame no. 0 and 46), then doing a 180◦ rotation

(between frame no. 46 and 106), and moving straight again.

As observed, most of the features are correctly tracked

over the time. Indeed, most of the lines appear smooth and

homogeneous. The lines are used to connect features that

belong to the same track. When a new feature is detected,

this feature is given a label with progressive numbering and

a new line (i.e. track) starts from it. In this graph, there are

three false matches that occur at the points where two tracks

intersect (e.g. at the intersection between tracks no. 1 and

58, between track no. 84 and 86, and between track no. 65

and 69). Observe that the three huge jumps in the graph are

not false matches; they are only due to the angle transition

from −π to π.

Observe that our method was able to match features even

when their correspondents were not found in the previous

frames. This can be seen by observing that sometimes circles

are missing on the tracks (look for instance at track no.

52). When a correspondence is not found in the previous

frame, we start looking into all previous frames (actually up

to twenty frames back) and stop when the correspondence is

found.

When examining the graph, it can be seen that some tracks

are suddenly given different numbers. For instance, observe

that feature no. 1 - that is the fist detected feature and starts

at frame no. 0 - is correctly tracked until frame no. 120

and is then labeled as feature no. 75. This is because at this

frame no correspondence was found and then the feature

was labeled as a new entry (but in fact is a false new entry).

Another example is feature no. 15 that is then labeled as

no. 18 and no. 26. By a careful visual inspection, only a

few other examples of false new entries could be found.

Indeed, tracks that at a first glance seem to be given different

numbers, belong in fact to other features that are very close

to the observed one.

After visually inspecting every single frame of the whole

video sequence (composed of 1852 frames), we found 37

false matches and 98 false new entries. Comparing these

errors to the 7408 corresponding pairs detected by the

algorithm over the whole video sequence, we had 1.8%
of mismatches. Furthermore, we found that false matches

occurred every time the camera was facing objects with

repetitive texture. Thus, ambiguity was caused by the pres-

ence of vertical elements which repeat almost identical in

the same image. On the other hand, a few false new entries

occurred when the displacement of the robot between two

successive images was too large. However, observe that when

a feature matches with no other feature in previous frames, it

is better to believe this feature to be new rather than commit

a false matching.

VII. CONCLUSION

In this paper, we presented a robust method for matching

vertical lines among omnidirectional images.The basic idea

to achieve robust feature matching consists in creating a

descriptor which is very distinctive and is invariant to rotation

and slight changes of illumination. We characterized the

performance of the descriptor on a large image dataset

by taking into account the sensitiveness to the different

parameters of the descriptor. The robustness of the approach

was also validated through a real navigation experiment with
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Fig. 10. Omnidirectional images taken at different locations.

a mobile robot equipped with an omnidirectional camera.

The performance of tracking was very good as many fea-

tures were correctly detected and tracked over long time.

Furthermore, because the results were obtained using only

the three matching rules described in Section IV, we expect

that the performance would be notably improved by adding

other constraints like mutual relations among features.
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